Resonance Raman Spectroscopic Evidence for the FeS₄ and Fe-O-Fe Sites in Rubrerythrin from *Desulfovibrio vulgaris*[†]

Bakul C. Dave, Roman S. Czernuszewicz, *, Benet C. Prickril, and Donald M. Kurtz, Jr. Benet C. Prickril,

Department of Chemistry, University of Houston, Houston, Texas 77204, and Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602

Received November 4, 1993; Revised Manuscript Received January 18, 1994®

ABSTRACT: Resonance Raman (RR) spectra of the non-heme iron protein rubrerythrin from Desulfovibrio vulgaris unequivocally demonstrate the presence of both a rubredoxin-type FeS₄ site and a $(\mu$ -oxo)diiron(III) cluster. The RR spectra of rubrerythrin excited at 496.5 and 568.2 nm are dominated by bands similar to those of rubredoxin and conform to the vibrational pattern expected for a distorted FeS₄ tetrahedron of an Fe(S-Cys)₄ site. Numerous overtone and combination bands of the Fe-S stretches are also observed, and a band at 650 cm⁻¹ is assigned to a cysteine C-S stretching mode. The 374-, 355-, and 340-cm⁻¹ bands, assigned to the three components of the $\nu_3(T_2)$ asymmetric FeS₄ stretching mode, are 2-8 cm⁻¹ lower than the corresponding frequencies for the Desulfovibrio gigas rubredoxin FeS4 site. Similar differences in frequencies of bands assigned to SFeS bending modes between rubredoxin and rubrerythrin are also detected. These frequency differences imply either slightly weaker Fe-S bonds or subtle conformational differences among the cysteinyl ligands in the rubrerythrin versus rubredoxin FeS₄ sites. The RR spectrum of rubrerythrin excited at 406.7 nm shows dramatically diminished intensities of the FeS4 bands with concomitant enhancement of a band at 514 cm⁻¹. This band shifts 18 cm⁻¹ to lower frequency when the protein is dissolved in $H_2^{18}O$. The frequency of this band and the ¹⁸O isotope shift are those expected for the symmetric Fe-O-Fe stretch of a bent oxo-bridged diiron(III) cluster and indicate that this cluster has at least one additional bridging ligand. A small but reproducible 2-cm⁻¹ shift to higher frequency of this symmetric Fe-O-Fe stretch in D₂O may indicate involvement of the oxo bridge in hydrogen bonding.

Rubredoxin (Rd)¹ is a small iron-sulfur protein found in several anaerobic bacteria. While Rd is believed to function as an electron transfer agent, the biological role of Rd in most organisms is ill-defined. On the other hand, Rd is a structurally well-characterized protein containing a single pseudotetrahedral Fe(S-Cys)₄ site (Day et al., 1993, and references therein). $(\mu$ -Oxo/hydroxo)diiron sites are found in a diverse group of proteins, such as hemerythrin and ribonucleotide reductase, in which the diiron site usually (though not always) interacts with O₂ during the functional process (Wilkins, 1992). Recently, a novel protein given the trivial name "rubrerythrin" was discovered (LeGall et al., 1988), whose spectroscopic properties strongly suggest the presence of both Rd-type FeS4 sites and a $(\mu$ -oxo/hydroxo)diiron cluster. Rubrerythrin has been isolated from the anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris (Hildenborough). The as-isolated protein was reported to consist of a homodimer (subunit M_r 21 900) and to contain four iron atoms arranged as two Rdtype FeS₄ sites and one antiferromagnetically coupled diiron cluster. More recent experiments (Ravi et al., 1993) show

We have sought additional probes to confirm and extend these previous structural conclusions about the FeS₄ sites and diiron clusters in rubrerythrin. Resonance Raman (RR) spectroscopy has been shown to be a particular insightful structural probe of both FeS₄ sites in oxidized Rd (Rd_{ox}) (Spiro et al., 1988) and of (μ -oxo)diiron(III) sites in hemerythrin and ribonucleotide reductase (Sanders-Loehr, 1989). S \rightarrow Fe or μ -O \rightarrow Fe charge-transfer (CT) electronic transitions are found in the visible or near-UV regions, respectively, for Rd_{ox}

that rubrerythrin can be reconstituted such that each subunit contains a diiron cluster as well as an FeS₄ site and, together with amino acid sequence comparisons (Kurtz & Prickril, 1991), suggest that the oxidized form of the diiron cluster bears a close structural (but not necessarily functional) resemblance to that of the $(\mu$ -oxo)(μ -carboxylato)diiron(III) cluster in oxidized ribonucleotide reductase. The crystals of rubrerythrin have been examined by X-ray crystallography at 3.0- (Sieker et al., 1988) and 2.3-Å (Stenkamp et al., 1992) resolutions and four cysteine ligands near the Rd-like center and four glutamate and two histidine ligands analogous to those binding irons in ribonucleotide reductase near the diiron center have been identified, but no structures of the metal clusters are available. The biological function of this unique combination of prosthetic groups in rubrerythrin remains to be established. The visible absorption, EPR, and Mössbauer spectra of the FeS₄ site in rubrerythrin are quite similar to those of Rd in both oxidized and reduced forms of the proteins. However, the midpoint reduction potential of the FeS₄ site in rubrerythrin ($\sim +230 \text{ mV}$) is about 250 mV more positive than that of Rd (LeGall et al., 1988; Pierik, 1993). Mössbauer spectra of both the as-isolated and reconstituted rubrerythrin show that the oxidized diiron cluster consists of an antiferromagnetically coupled pair of five- or six-coordinate high-spin ferric irons with oxygen and/or nitrogen ligands.

[†] This work was supported by National Institute of General Medical Sciences-NIH Grant GM-48370 (to R.S.C.), by Robert A. Welch Foundation Grant E-1184 (to R.S.C.), and by National Institutes of Health Grant GM40388 (to D.M.K.). D.M.K. is an NIH Research Career Development Awardee 1988–1993 (HL02207).

^{*} To whom correspondence should be addressed.

University of Houston.

[§] University of Georgia.

Abstract published in Advance ACS Abstracts, March 1, 1994.

¹ Abbreviations: Rd, rubredoxin; Rd_{ox}, oxidized rubredoxin; RR, resonance Raman; EPR, electron paramgnetic resonance; CT, charge transfer; HB(pz)₃, hydrotris(1-pyrazolyl)borate; tacn, 1,4,7-triaza-cyclononane; hdp, N-(o-hydroxybenzyl)-N,N-bis(2-pyridylmethyl)amine; pa, tris(2-pyridylmethyl)amine; phen, 1,10-phenanthroline; hedta, N-(hydroxyethylethylene)diaminetriacetate; OAc, acetate; OBz, benzoate.

or the diiron proteins. With laser excitations tuned to these CT transitions, Fe-S or Fe-O-Fe stretching vibrational modes can be preferentially enhanced in RR spectra of the respective proteins. Since analogous $S \rightarrow Fe$ and μ -O $\rightarrow Fe$ CT transitions are apparently observed for rubrerythrin (LeGall et al., 1988), this protein is an attractive target for RR studies. In this work we examine the RR spectra of D. vulgaris rubrerythrin in H₂O, H₂¹⁸O, D₂O, and D₂¹⁸O at cryogenic temperatures using variable wavelength excitation to extract the vibrational signatures of the FeS₄ and diiron sites and to resolve the question of the bridging ligand in the latter cluster.

MATERIALS AND METHODS

Protein Purification and Isotopic Substitution. The growth of D. vulgaris (Hildenborough) and the purification of rubrerythrin were performed as previously described (LeGall et al., 1988). The as-isolated protein in 0.1 M Tris-HCl, pH 7.6, was stored at -20 °C. D_2O (99.9% D) and $H_2^{18}O$ (98% ¹⁸O) and $D_2^{18}O$ (99% D, 98% ¹⁸O) were obtained from Isotec (Miamisburg, OH) and Cambridge Isotopes, Inc. (Woburn, MA), respectively. The as-isolated rubrerythrin was crystallized by spontaneous crystallization upon protein concentration. The crystalline protein was then redissolved in 30 μ L of $H_2^{18}O$, D_2O , or $D_2^{18}O$ to an approximate concentration of 1 mM directly in a gold-plated copper cup of a Raman liquid- N_2 Dewar (see below). The isotopically substituted samples were allowed to equilibrate for 10-15 min before freezing.

Resonance Raman Spectroscopy. RR spectra were obtained using lines from Coherent K-2 Kr+ (406.7, 530.9, and 568.2 nm) and 90-6 Ar⁺ (496.5 nm) ion lasers by collecting front-scattering directly from the surface of a frozen protein solution held in vacuo on a liquid N2-cooled cold finger. Under these conditions no protein damage was observed, even during prolonged (6-12 h) spectral data acquisition at laser powers of 200-400 mW. Details of this sampling technique are presented elsewhere (Czernuszewicz & Johnson, 1983). To ensure accurate isotopic measurements, the protein samples in four waters (H₂O, D₂O, H₂¹⁸O, and D₂¹⁸O) were placed side by side on the gold-plated copper cold finger so that the RR data could be collected under the same conditions. Conventional scanning Raman instrumentation equipped with a Spex 1403 double monochromator and a Hamamatsu 928 photomultiplier detection system was used to record the spectra under the control of a Spex DM3000 microcomputer system (Czernuszewicz, 1993). The spectral slit width was 6 cm⁻¹ and the spectrometer was advanced in 1-cm⁻¹ increments over the range 100-1700 cm⁻¹ for the initial survey spectra (not shown) and in 0.5-cm⁻¹ increments over smaller ranges for detailed spectra (Figures 1-3). Integration times were 1 s per point for all spectra. Multiple scans (5-7) were averaged to improve signal-to-noise ratios. Slowly sloping baselines were subtracted out of the digitally collected spectra by using LabCalc software (Galactic Industries Corporation) mounted on a 486-DX 33 MHz PC microcomputer. All spectra were calibrated using the known vibrational modes of CCl₄ and CH₂Cl₂. A Hewlett-Packard 8-pen ColorPro graphics plotter was used for hard copy output spectra.

RESULTS AND DISCUSSION

Figure 1 shows low-temperature (77 K) RR spectra of asisolated D. vulgaris rubrerythrin in a liquid N2 cell with excitation at 496.5 and 406.7 nm. These excitation wavelengths should be in resonance with the 492- and 368-nm absorption bands, respectively, of rubrerythrin (LeGall et al., 1988). Figure 2 compares RR spectra obtained with 406.7-

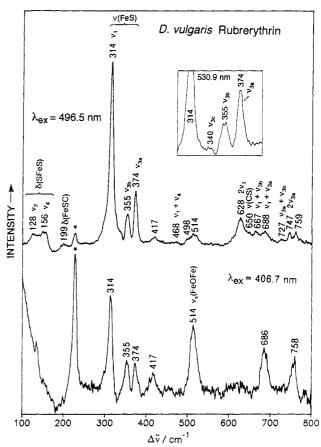


FIGURE 1: Low-temperature (77 K) RR spectra of as-isolated D. vulgaris rubrerythrin obtained in the 100-800-cm⁻¹ region with 496.5-(upper trace) and 406.7-nm (lower trace) excitation wavelengths. the inset shows details of the ν_3 Fe-S stretching region excited at 530.9 nm. Conditions: front-scattering from the surface of a frozen protein solution kept in a liquid-N2 Dewar; 150 mW of laser power; 6-cm⁻¹ slit widths; average of six scans, with each scan having a 1-s integration time at 0.5-cm⁻¹ increments. Asterisks indicate the 228cm⁻¹ ice band.

nm excitation for the protein contained in H₂O and the recrystallized protein dissolved in H₂¹⁸O, D₂O, and D₂¹⁸O. The dashed lines correlate shifted bands due to the same vibrational modes. Figure 3 shows 450-550-cm⁻¹ RR spectra with 406.7- (upper two) and 496.5-nm (lower two) excitations, in H₂O and H₂¹⁸O, which serves to demonstrate how a combination of the wavelength-dependent RR selectivity and isotopic substitution helps to resolve overlapping band structure in this region. Band frequencies, isotope shifts, and assignments are listed in Tables 1 and 2. Also listed for comparison purposes are low-temperature RR data previously reported for Rd_{ox} from D. gigas (Table 1) and for diiron(III) forms of hemerythrin, ribonucleotide reductase, and synthetic oxobridged complexes (Table 2).

FeS₄ Sites. The Fe(S-Cys)₄ site of oxidized rubredoxins has a distinctive series of four Fe-S stretching vibrations between 310 and 380 cm⁻¹ involving mostly symmetric and asymmetric changes in the four iron-cysteine bond lengths (Spiro et al., 1988). The 496.5-nm excited RR spectrum in Figure 1 is overwhelmingly dominated by the vibrational modes characteristic of Rdox-type FeS4 sites. The number, positions, and intensities of these resonance enhanced Raman bands closely match those observed for frozen solutions of Rdox from Desulfovibrio gigas (Table 1) (Czernuszewicz et al., 1986). Since 496.5-nm excitation is in resonance with the S→Fe CT electronic transition, whose effect is to weaken the Fe-S bonds in the excited state, the spectrum is further dominated by the

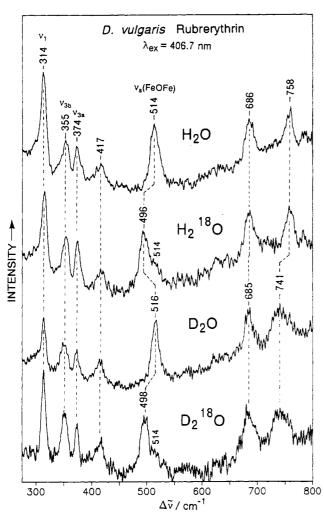


FIGURE 2: 406.7-nm excited RR spectra (300–800 cm⁻¹) of *D. vulgaris* rubrerythrin (77 K) contained in H_2O , $H_2^{18}O$, D_2O , and $D_2^{18}O$, showing the effects of $^{16/18}O$ and H/D exchange on the resonance-enhanced vibrational modes. Conditions are as in Figure 1

Fe-S stretching bands. The most intense of these bands at 314 cm⁻¹ matches exactly the frequency of the polarized band observed for D. gigas Rdox and is very close to the corresponding band at 312 cm⁻¹ observed for Rd_{ox} from several other sources (Yachandra et al., 1983). This band is assigned to the totally symmetric breathing mode of the FeS₄ tetrahedron, ν_1 (A_1 in idealized T_d symmetry). The first overtone of this mode can also be detected, $2\nu_1$ at 628 cm⁻¹. In the 350-cm⁻¹ region, where the triply-degenerate asymmetric Fe-S stretch, $\nu_3(T_2)$, is expected, two bands are clearly detected, v_{3a} at 374 cm⁻¹ and v_{3b} at 355 cm⁻¹ (Figure 1). In addition, with 530.9- and 568.2-nm excitations, a third band appeared weakly in this region, v_{3c} , at 340 cm⁻¹ (Figure 1, inset). The assignment of these bands as components of the asymmetric Fe-S stretch is consistent with the assignment of peaks observed at 376 (ν_{3a}) , 363 (ν_{3b}) , and 348 (ν_{3c}) cm⁻¹, which shift to higher frequency upon 54Fe substitution into D. gigas Rdox (Czernuszewicz et al., 1986). This assignment is further substantiated by a recent detailed analysis of the FeS4 vibrational spectra of Rd model complexes.2

Previous RR studies on Rd_{ox} have shown the intense v_1 Fe-S band to be broad and asymmetric, implying more than one component to this band; e.g., for D. gigas Rd_{ox} a clearly

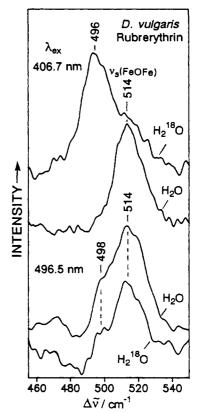


FIGURE 3: 460-540-cm⁻¹ RR spectra of *D. vulgaris* rubrerythrin (77 K) excited at 406.7 (upper two traces) and 496.5 nm (lower two traces), in H₂O and H₂¹⁸O, showing that by selective tuning of the laser excitation wavelengths and isotopic substitution it is possible to resolve overlapping bands arising from the Fe-O-Fe (514 cm⁻¹) and FeS₄ (498, 514 cm⁻¹) sites of rubrerythrin. Conditions are as in Figure 1, except that these spectra are smoothed.

visible shoulder on the ν_1 314-cm⁻¹ band has been located at 324 cm⁻¹ in the high-resolution spectrum at 77 K and assigned to a S-C-C bending mode, $\delta(SCC)$, on the basis of its insensitivity to isotopic substitution with ⁵⁴Fe (Table 1). We saw no indication of such a peak in the RR spectra of rubrerythrin. However, the frequency and intensity of the $\delta(SCC)$ band can be quite variable, as demonstrated by the dramatically different shapes of the ν_1 bands (~312 cm⁻¹) in the room-temperature RR spectra of Rd_{ox} from several organisms (Yachandra et al., 1983) and the results of normal coordinate analysis calculations.²

Inasmuch as the ν_3 Fe-S stretch splits into three components in the RR spectrum of rubrerythrin, the actual symmetry of its FeS_4 sites must be significantly lower than T_d , a situation which has been found for all Rds studied by RR spectroscopy. Normal coordinate analysis shows that the extent of splitting of the v_3 mode depends mainly on the magnitudes of the S-Fe-S angles and on the kinematic coupling between $\nu(FeS)$ and δ (SCC), which is greatly dependent on the Fe–S–C–C dihedral angles. Also, for a given set of the Fe-S-C-C dihedral angles, the frequency of ν_1 is calculated to be about twice as sensitive to kinematic coupling as that of ν_3 (Yachandra et al., 1983). Thus, even though the ν_1 mode for rubrerythrin occurs at the same frequency as those of D. gigas Rd_{ox}, the 2-8 cm⁻¹ lower v_{3a-c} Fe-S frequencies for rubrerythrin versus Rd_{ox} imply some structural differences between the respective FeS₄ sites, such as slightly weaker Fe-S bonds in rubrerythrin and/or different cysteine conformations in the two proteins. The $\nu_2(E)$ and $\nu_4(T_2)$ S-Fe-S bending modes of rubrerythrin are located at 128 and 156 cm⁻¹, respectively, which are 2 cm⁻¹ lower and 6 cm⁻¹ higher than for D. gigas Rd_{ox}, further supporting subtle

² Czernuszewicz, R. S., Kilpatrick, L., Koch, S., & Spiro, T. G. (1994) J. Am. Chem. Soc. (submitted).

Table 1: Resonance Raman Frequencies (cm⁻¹) and Assignments for D. gigas Rubredoxin and D. vulgaris Rubrerythrina

D. gigas rubredoxin	D. vulgaris rubrerythrin	assignment $\delta(SFeS), b \nu_2, c A_1(E)d$		
130	128			
150	156	$\delta(SFeS), \nu_4, E(T_2)$		
174		$\delta(\text{FeSC})$		
184	199	$\delta(\text{FeSC})$		
314	314	$\nu(\text{FeS}), \nu_1, A_1$		
324		δ(SCC)		
348	340	$\nu(\text{FeS}), \nu_{3c}, E(T_2)$		
363	355	$\nu(\text{FeS}), \nu_{3b}, E(T_2)$		
376	374	$\nu(\text{FeS}), \nu_{3a}, B_2(T_2)$		
403	417	?		
443	442	$\nu_1 + \nu_2$		
463	468	$\nu_1 + \nu_4$		
502	498			
518	514	? ?		
	514(-18)[+2]	ν _s (FeOFe)√		
627	628	$2\overline{\nu_1}$		
653	650	$\nu(CS)$		
	667	$\nu_1 + \nu_{3b}$		
	686[-1]	?		
689	688	$\nu_1 + \nu_{3a}$		
733	727	$\nu_{3a} + \nu_{3b}$		
751	747	$2\nu_{3a}$		
	758[-17]	?		
757	759	$2\nu_1 + \nu_2$		
777		$2\nu_1 + \nu_4$		

^a Rubredoxin data and assignments from Czernuszewicz et al. (1986). Rubrerythrin data from this work. b δ_{xyz} and ν_{xy} are bending and stretching coordinates involving the indicated atoms. $c_{\nu_{1}-4}$ are normal modes of a XY₄ tetrahedron. ^d Symmetry designation for the $D_{2d}(T_d)$ point groups. $^{\circ}$ The numbers in () and [] indicate the frequency shifts in $H_2^{18}O$ and D_2O , respectively. f_{ν_8} is the symmetric (in-phase) Fe-O-Fe stretching coordinate.

structural differences between the Fe-S sites in these proteins. It is unclear whether such subtle alterations in the rubrerythrin FeS₄ site could contribute to its relatively high reduction potential (LeGall et al., 1988).

Finally, it can be seen in Figure 1 that overtone and combination bands associated with the FeS4 fundamentals of rubrerythrin show appreciable intensity, as expected for RR scattering. One weak band in this region at ~650 cm⁻¹ does not correspond to a combination band and is assigned to the cysteine C-S stretching mode, in analogy to the assignment of the 653-cm⁻¹ band of D. gigas Rd_{ox} (Table 1). There are also five Raman bands above 400 cm⁻¹ that have not been assigned; however, three of these bands at 417, 498, and 514 cm⁻¹ [the 514-cm⁻¹ peak is coincidently degenerate with the $v_s(Fe-O-Fe)$ stretch; see Figure 3] clearly correspond to a similar set of bands observed previously in the RR spectra of D. gigas Rd_{ox} at 403, 502, and 518 cm⁻¹, respectively (Czernuszewicz et al., 1986). The origin of these features, and of the other two H₂¹⁸O-insensitive bands seen with 406.7nm excitation at 686 and 758 cm⁻¹ (685 and 741 cm⁻¹ in deuterated waters, Figure 2), remains to be investigated.

Diiron(III) Cluster. The bent Fe-O-Fe moiety of $(\mu$ -oxo)diiron(III) clusters has two vibrational stretching modes: an in-phase symmetric stretch, ν_s (Fe-O-Fe), and an out-of-phase asymmetric stretch, $v_{as}(Fe-O-Fe)$. Both of these modes have been observed in resonance Raman spectra of (µ-oxo)diiron(III) proteins and synthetic models (Sanders-Loehr, 1989; Sanders-Loehr et al., 1989; Gómez-Romero et al., 1989; Norman et al., 1990; Turowski et al., 1990), and both are sensitive to ¹⁸O substitution, especially when the Fe-O-Fe angle deviates appreciably from 180°. The v_s(Fe-O-Fe) band, observed between 395 and 540 cm⁻¹, is usually more intense than the $\nu_{as}(Fe-O-Fe)$ band, observed between 750 and 840 cm⁻¹. As mentioned earlier, these bands are most strongly

enhanced using near-UV excitation. The 406.7-nm excited RR spectrum of rubrerythrin (Figures 2 and 3) shows a peak at 514 cm⁻¹ which shifts to 496 cm⁻¹ upon H₂¹⁸O exchange. Therefore, the 514-cm⁻¹ band must involve vibrational motion of a water-exchangeable oxygen atom. This isotope shift is observed shortly after dissolving crystals of rubrerythrin in H₂¹⁸O (see Methods and Materials), which demonstrates that total incorporation of solvent oxygen in the vibrating ligand occurs very readily. Similarly facile oxo bridge exchange with solvent water is observed for ribonucleotide reductase, but not for methemerythrin (Sanders-Loehr, 1989). This observation is consistent with the structural similarity of the rubrerythrin diiron site to that of ribonucleotide reductase which was inferred from the amino acid sequence comparisons (Kurtz & Prickril, 1991) and suggests that the rubrerythrin diiron site is distinct from that of methemerythrin. When the rubrerythrin crystals are dissolved in D₂O, the 514-cm⁻¹ peak shifts 2 cm⁻¹ to higher frequency. The same 2-cm⁻¹ upward shift is observed in $D_2^{18}O$ versus $H_2^{18}O$ (Figure 2); thus, this small deuterium isotope shift appears to be reproducible. These frequencies and isotope shifts, when compared to those of other diiron(III) proteins and synthetic models (Table 2), allow assignment of the 514-cm⁻¹ peak to $\nu_s(Fe-O-Fe)$ in rubrerythrin. Small upward shifts of $\nu_s(\text{Fe-O-Fe})$ in D₂O for oxyhemerythrin and ribonucleotide reductase apparently indicate hydrogen bonding to the oxo bridge, and such hydrogen bonding is, thus, also indicated in rubrerythrin.

From the observed $\nu_s(\text{Fe-O-Fe})$ frequency (514 cm⁻¹) and its ¹⁸O isotope shift (-18 cm⁻¹), an Fe-O-Fe angle of 124° can be calculated for the diiron cluster in rubrerythrin by solving a simple X-Y-X three-body vibrational problem (Wing & Callahan, 1969). This calculated angle is similar to those observed by X-ray crystallography of oxo-bridged diiron(III) clusters in proteins and synthetic models (Table 2). The rubrerythrin $\nu_s(\text{Fe-O-Fe})$ frequency and the magnitude of its ¹⁸O shift are inconsistent with a monobridged Fe-O-Fe cluster (cf. Table 2), but are consistent with either a di- or tribridged cluster in which the additional bridging ligands are bidentate carboxylates. The present data are insufficient to distinguish between the latter two types, which so far represent the only ones known to occur in $(\mu$ -oxo)diiron proteins (Holmes & Stenkamp, 1991; Holmes et al., 1991; Nordlund & Eklund, 1993). The data appear to be inconsistent with a $(\mu$ -hydroxo)diiron(III) site; no resonance enhancement of Fe- $(\mu$ -OH) stretching modes is expected for such a system, unless coupled to another chromophore (Ling et al., 1992). The only apparent chromophore in the rubrerythrin electronic spectrum likely to approach resonance with 406.7-nm excitation is that at ~365 nm (LeGall et al., 1988), which is most reasonably assigned as a μ -O²- \rightarrow Fe(III) charge-transfer transition (Sanders-Loehr et al., 1989).

Finally, no other peaks which shift upon H₂¹⁸O substitution were detected in the rubrerythrin RR spectrum between 100 and 1700 cm⁻¹. This result differs from RR spectra of other $(\mu$ -oxo)diiron(III) proteins and synthetic models, which usually show a relatively weak H₂¹⁸O-sensitive peak between 750 and 785 cm⁻¹ assigned to ν_{as} (Fe-O-Fe) (Table 2). A weak peak due to $v_{as}(Fe-O-Fe)$ may be obscured in the RR spectrum of rubrerythrin by the non-H₂¹⁸O sensitive protein band at 758 cm⁻¹ (Figure 2). The $\nu_{as}(\text{Fe-O-Fe})/\nu_{s}(\text{Fe-O-Fe})$ intensity ratio, I_{as}/I_{s} , in RR spectra appears to be sensitive to the asymmetry of the Fe-O-Fe coordination sphere (Sanders-Loehr et al., 1989; Gómez-Romero et al., 1989; Norman et al., 1990; Turowski et al., 1990). In the case of synthetic $(\mu$ -oxo)diiron(III) complexes, I_{as}/I_s was found to vary from

Table 2: Fe-O-Fe Angles (deg) and Vibrational Frequencies (cm⁻¹) of Oxo-Bridged Diiron(III) Clusters in Proteins and Model Complexes^a

	∠(Fe–O–Fe) ^b	$\nu_{\rm s}({ m FeOFe})$		$\nu_{as}(\text{FeOFe})$			
		H ₂ O	H ₂ ¹⁸ O	$\Delta^{18}O$	H ₂ O	H ₂ ¹⁸ O	Δ18Ο
rubrerythrin	124	514[+2]°	496[+2]	-18	nd		
		Tribridge	ed Clusters				
oxyhemrythrin	125^{d}	486[+4]	482	-14	753	716	-37
methemerythrinN ₃	128*	507	497	-14	768	733	-35
$[Fe_2O(OAc)_2(HBpz_3)_2]$	124	530	513	-17	751	718	-30
$[Fe_2O(OAc)_2(tacn)_2]^{2+}$	119	540	523	-17	749	716	-33
		Dibridge	ed Clusters				
ribonucleotide reductase	128f	493[+4]	480	-13	756	721	-25
$[Fe_2O(OBz)(hdp)_2]^+$	129	494	477	-17	763	720	-43
$[Fe_2O(OBz)(tpa)_2]^{3+}$	130	497	480	-17	772	734	-38
		Monobrid	ged Clusters				
$[Fe_2O(H_2O)_2(phen)_4]^{4+}$	155	395	390	- 5	827	786	-41
[Fe ₂ O(hedta) ₂] ² -	165	409	407	-2	838	nd	

^a Rubrerythrin data are from this work. Other data are from Sanders-Loehr et al. (1989) and references therein. ^b Rubrerythrin angle calculated as described in the text; all other angles are from X-ray crystal structures. ^c Numbers in square brackets show frequency shifts in deuterated waters. ^d Holmes et al. (1991). ^e Holmes and Stenkamp (1991). ^f Nordlund and Eklund (1993). The other reported angle, 108°, is probably too small for a (μ-oxo)(μ-carboxylato) diiron(III) unit.

< 0.04 in complexes with identical coordination spheres around each iron to 4.2 in a complex with extremely different coordination spheres around each iron. I_{as}/I_s was found to be 0.2–0.3 for the $(\mu$ -oxo)diiron(III) sites in hemerythrin and ribonucleotide reductase, neither of which shows identical coordination spheres for its constituent iron centers (Holmes & Stenkamp, 1991; Holmes et al., 1991; Nordlund & Eklund, 1993). Thus, the inability to observe $\nu_{as}(Fe-O-Fe)$ in RR spectra of rubrerythrin might be due to a more symmetrical diiron cluster than is found in either of the former two proteins. A more symmetrical diiron cluster in rubrerythrin than in ribonucleotide reductase has previously been inferred from comparisons of Mössbauer spectra (Ravi et al., 1993). Further studies are in progress to clarify this point and to delineate a function for the unique combination of non-heme iron sites in rubrerythrin.

ACKNOWLEDGMENT

We thank Dr. Jean LeGall for providing the rubrerythrin samples used in this study and Mr. Ming-Yin Lu for assistance in their purification. We also thank Professors Thomas G. Spiro and Michael K. Johnson for helpful discussions and Drs. Latonya Kilpatrick and Yun-Hua Huang for obtaining some earlier resonance Raman data on D. vulgaris rubrerythrin.

REFERENCES

- Czernuszewicz, R. S. (1993) in *Methods in Molecular Biology* (Jones, C., Mulloy, B., & Thomas, A. H., Eds.) Vol. 17, pp 345-374, Humana Press, Totawa, NJ.
- Czernuszewicz, R. S., & Johnson, M. K. (1983) Appl. Spectrosc. 37, 297-298.
- Czernuszewicz, R. S., LeGall, J., Moura, I., & Spiro, T. G. (1986) Inorg. Chem. 25, 696-700.
- Day M. W., Hsu, B. T., Joshua-Tor, L., Park, J.-B., Zhou, Z. H., Adams, M. W. W., & Rees, D. C. (1992) Protein Sci. 1, 1494– 1507.

- Gómez-Romero, P., Witten, E. H., Reiff, W. M., Backes, G., Sanders-Loehr, J., & Jameson, G. B. (1989) J. Am. Chem. Soc. 111, 9039-9047.
- Holmes, M. A., & Stenkamp, R. E. (1991) J. Mol. Biol. 220, 723-737.
- Holmes, M. A., Trong, I. L., Turley, S., Sieker, L. C., & Stenkamp, R. E. (1991) J. Mol. Biol. 218, 583-593.
- Kurtz, D. M., Jr., & Prickril, B. C. (1991) Biochem. Biophys. Res. Commun. 181, 337-341.
- LeGall, J., Prickril, B. C., Moura, I., Xavier, A., Moura, J. J. G., & Huynh, B.-H. (1988) Biochemistry 27, 1636-1642.
- Ling, J., Farooq, A., Karlin, K. D., Loehr, T. M., & Sanders-Loehr, J. (1992) *Inorg. Chem.* 31, 2552-2556.
- Nordlund, P., & Eklund, H. (1993) J. Mol. Biol. 232, 123-164.
 Norman, R. E., Yan, S., Que, L., Jr., Backes, G., Ling, J., Sanders-Loehr, J., Zhang, J. H., & O'Connor, C. J. (1990) J. Am. Chem. Soc. 112, 1554-1562.
- Pierik, A. J., Wolbert, R. B. G., Portier, G. L., Verhagen, M. F. J. M., & Hagen, W. R. (1993) Eur. J. Biochem. 212, 237-245.
- Ravi, N., Prickril, B. C., Kurtz, D. M., Jr., & Huynh, B.-H. (1993) *Biochemistry 33*, 8487-8491.
- Sanders-Loehr, J. (1989) in *Iron Carriers and Iron Proteins* (Loehr, T. M., Ed.) pp 373-466, VCH Press, New York.
- Sanders-Loehr, J., Wheeler, W. D., Shiemke, A. K., Averill, B. A., & Loehr, T. M. (1989) J. Am. Chem. Soc. 111, 8084–8093.
- Sieker, L. C., Turley, S., Prickril, B. C., & LeGall, J. (1988) Proteins 3, 184-186.
- Spiro, T. G., Czernuszewicz, R. S., & Han, S. (1988) in Biological Applications of Raman Spectroscopy (Spiro, T. G., Ed.) Vol. 3, pp 523-554, Wiley-Interscience, New York.
- Stenkamp, R. E., Holmes, M., Sieker, L. C., Trong, I. L., Turley, S., & LeGall, J. (1992) American Crystallographic Association, Abstr. 20, 140.
- Turowski, P. N., Armstrong, W. H., Roth, M. E., & Lippard, S. J. (1990) J. Am. Chem. Soc. 112, 681-690.
- Yachandra, V. K., Hare, J., Moura, I., & Spiro, T. G. (1983) J. Am. Chem. Soc. 105, 6455-6461.
- Wilkins, R. G. (1992) Chem. Soc. Rev. 21, 171-178.
- Wing, R. M., & Callahan, K. P. (1969) Inorg. Chem. 8, 871-874.